Enrolment No.

HASMUKH GOSWAMI COLLEGE OF ENGINEERING, VAHELAL RIMIDIAL EXAMINATION, OCTOMBER-2016

Subject Code: 2130002

Subject Name: AEM

Time: 10:00 TO 11:00

Date:17/10/2016

Sem: 3RD (All Branch)

Total Marks: 20

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

QUE.1 (A) (i) Find general solution of
$$y^{(v)} + 4y''' + 6y'' + 4y' + y = 0$$

(ii) Solve Differential equation $y'' - 4y = 0$ $y(0) = y'(0) = 0$
(iii) Find $L[t \sin(2t)\sin(t)]$

- (B) Find Laplace transform of $L[t^2e^{-2t}sin^3(t)]$
- QUE.2 (A) Find its Fourier series for the function $f(x) = x^2$, $-\pi \le x \le \pi$ where $f(x+2\pi) = f(x)$.

 Hence Deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$
 - (B) For the function $f(x) = \begin{cases} x+4 & -4 < x < 0 \\ x-4 & 0 < x < 4 \end{cases}$, find its Fourier series. Where f(x+8)=f(x).
 - (B) Find the Fourier cosine series for $f(x) = cx x^2$ in interval (0,c)
- QUE.3 (A) Find Laplace transform of f(t) where $f(t) = \begin{cases} 0 & 0 < t < 3 \\ 4 & t \ge 3 \end{cases}$

(B) Solve:
$$(D^2 + 1)^3 y = \cos(x) + e^{-x}$$

OR

(A) Find
$$L\left[e^{t}\left(\frac{(t+\sin(t))}{t}\right)\right]$$

(B) Using Fourier Integral, Show that
$$\int_0^\infty \frac{\cos \lambda x + \lambda \sin \lambda x}{\lambda^2 + 1} d\lambda = \begin{cases} 0 & x < 0 \\ \frac{\pi}{2} & x = 0 \\ \pi e^{-x} & x > 0 \end{cases}$$