Subject Code: 2170607
Subject Name: DRS
Time: 10:00 TO 11:00 AM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Codes used for Design are IS-456, SP16, IS-875(PART I TO IV)
QUE. 1 (A) Estimate wind forces for a water tank for the following data.
Total height of tank $=27 \mathrm{~m}$, which includes height of the supporting shaft $=20 \mathrm{~m}$, height of the bottom conical portion $=2 \mathrm{~m}$, height of cylindrical portion $=4 \mathrm{~m}$ and Rise of top spherical dome $=1 \mathrm{~m}$, diameter of supporting shaft $=4 \mathrm{~m}$ and diameter of the cylinder portion $=10 \mathrm{~m}$, location is Ahmedabad, Terrain Category $=\mathrm{II}$ and classB, Ground Slope $=1$ vertical to 7 Horizontal, hill Height $=280 \mathrm{~m}$, location from crest 100 m windward. Design life 100 years.

QUE. 2 (A) $\mathrm{G}+3$ storey building having 4 bays of 5 m in X - direction and 5 bays of 4 m in $\mathrm{Y}-7$ direction. Design a two way slab with one long edge discontinuous. Floor height is 3.3 m and Live load is $3 \mathrm{kN} / \mathrm{m} 2$. Use M-20 Grade of concrete and steel $\mathrm{Fe}-415$.

OR

(A) Design a footing of $\mathbf{G}+3$ building.

Total working load on footing $=2325 \mathrm{kN}$
Size of column $=300 \times 600 \mathrm{~mm}$ S.B.C. $=200 \mathrm{kN} / \mathrm{m} 2$

Use M-20 Grade of concrete and steel $\mathrm{Fe}-415$. (checks are not compulsory)
QUE. 3 (A) Design a cantilever retaining wall to retain the earth of height 4 m above lower 7 ground level. Fix the basic dimension and carry out the stability check of retaining wall.
Surcharge Pressure $=15 \mathrm{kN} / \mathrm{m} 2$
Take SBC of soil $=150 \mathrm{kPa}$
Angle $\emptyset=30^{\circ}$, Coefficient of friction $=0.55$
Unit weight of soil $=18 \mathrm{KN} / \mathrm{m}^{3}$
Use M20 grade of concrete and Fe 415 grade of steel
OR
(A) Design and detail counterfort retaining wall up to fix dimension and stability check for the following data:
Angle $\varnothing=30^{\circ} \quad$ Unit of weight of soil $=16 \mathrm{kN} / \mathrm{m} 3$
Height wall above G.L $=7 \mathrm{~m} \quad$ Safe bearing capacity of soil $=150 \mathrm{kN} / \mathrm{m} 3$
Co-efficient of friction between the base and the soil is 0.60 .
Use M20 concrete and Fe 415 steel.

