Enrolment No.

4

HAST HAST HASMUKH GOSWAMI COLLEGE OF ENGINEERING, VAHELAL MID SEMESTER EXAMINATION, SEPTEMBER-2016

Subject Code: 2151002 Date: 24/09/16

Subject Name: Engineering Electromagnetics Sem: 5TH

Time: 10:00 TO 10:50 **Total Marks: 20**

Instructions:

LAMELAL .

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

QUE.1 (A) 3

Transform the given vector $\mathbf{A} = r2 \mathbf{ar} + \sin \theta \mathbf{a} \phi$ into rectangular coordinate.

OR

3 **(B)**

> Derive the expression for the electric field due to infinitely long line char located on the z axis at any arbitrary point P (ρ, ϕ, z) .

QUE.2 (A) 3

> "The electric flux passing through any closed surface is equal to the total charge enclosed by that surface." Justify and prove.

(B) Evaluate both side of divergence theorem for the field $D = 2xy ax + x^2y ay$ and the rectangular parallel piped formed by the planes x=0, and x=1, y=0 and y=2, z=0, and z=3.

OR

(B) 4

Explain stoke theorem.

3 QUE.3 **(A)**

Point charges of 120nc are located at A(0,0,1) and B (0,0,-1) in free space find E at P(0.5,0,0)

(B) Calculate the total electric flux leaving the cubical surface formed by six 4 planes x, y, $z = \pm 5$ if the charge distribution is: (i) two point charges, 0.56 μ C at (2.5, -3.6, -4.7) and $1/7 \mu C$ at (-3, 4.5, -4.9); (ii) a uniform line charge of $\pi \mu C/m$ at x = 3, y = 4.5; (iii) a uniform surface charge of 0.1 μ C/m² on the plane y = 4x.

OR

- **(A)** 3 Find the force on a 100μ C charge at (0, 0, 3) m if four like charges of 20μ C are located on the x and y axis at ± 4 m.
- Evaluate work done in bringing a charge of 5 µC from origin to P(2,-1,4) through 4 **(B)** field $\hat{E} = 2xyz$ ax $+x^2z$ ay $+x^2y$ az (v/m) through the path Straight line segments (0,0,0) to (2,0,0) to (2,-1,0) to P.