HASMUKH GOSWAMI COLLEGE OF ENGINEERING, VAHELAL MID SEMESTER EXAMINATION, SEPTEMBER-2016

Subject Code: 2131905
Date: 28/09/2016
Subject Name: Engineering Thermodynamics
Time: 10:00 TO 10:50
Sem: 3RD
Total Marks: 20

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

QUE. 1 (A) Explain Microscopic approach and macroscopic approach.
(B) Derive general steady flow energy equation.

QUE. 2 (A) Show that coefficient of performance of heat pump and refrigerator can be related 3 as; COPRef $=\mathrm{COP}_{\mathrm{HP}}-1$
(B) Write the limitation of first law of thermodynamics. Explain the second law of 4 thermodynamics by Clausius statement and Kelvin-Plank statement.

OR

(B) A turbine operating under steady flow conditions receives steam at a velocity of 504 m / s and elevation of 5 m and a specific enthalpy of $2700 \mathrm{KJ} / \mathrm{kg}$. The steam leaves the turbine at a velocity of $83.3 \mathrm{~m} / \mathrm{s}$, an elevation of 1.5 m and a specific enthalpy of $2250 \mathrm{~kJ} / \mathrm{kg}$. Heat losses from the turbine to the surroundings amount to $1.41 \mathrm{~kJ} / \mathrm{hr}$. Determine the mass flow rate of steam required in $\mathrm{kg} / \mathrm{hr}$ for output power of 360 kW

QUE. 3 (A) Draw Rankine cycle on P-v, T-s diagrams and derive an expression for its thermal 3 efficiency with and without pump work.
(B) Derive an expression for Otto cycle efficiency with usual notation.

OR

(A) Derive an expression for Carnot efficiency with usual notation.
(B) In an air standard diesel cycle the compression ratio is 16 . At the beginning of 4 isentropic compression the temperature is $15^{\circ} \mathrm{C}$ and pressure is 0.1 MPa . Heat is added until the temperature at the end of constant pressure process is $1480^{\circ} \mathrm{C}$ Calculate (1) Cut off ratio. (2) Cycle efficiency (3) M. E. P. Take $\gamma=1.4, \mathrm{R}=287$ $\mathrm{NM} / \mathrm{Kg} \mathrm{K}, \mathrm{Cv}=0.718 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}, \mathrm{CP}=1.005 \mathrm{KJ} / \mathrm{Kg}$ K Assume Mass of air $=1 \mathrm{Kg}$

